Перейти до основного вмісту

Логарифмічні нерівності

    1. Якщо a>1, то з нерівності logaf(x)<logag(x) слідує, що
    2. Якщо 0<a<1, то з нерівності logaf(x)<logag(x) слідує, що
    3. Якщо a>1, то з нерівності logaf(x)<k слідує, що
    4. Якщо 0<a<1, то з нерівності logaf(x)<k слідує, що
  1. НМТ 2023. Розв’яжіть нерівність log0,3(x+3)>log0,34.
    АБВГД
    (1; +∞) (7; +∞) (-∞; 1) (0; 1) (-3; 1)
    Показати відповідь
    Д.

  2. Розв’яжіть нерівність log0,9(3x)>2.
    АБВГД
    (-∞; 0,27) (-∞; 0,6) (0,27; +∞) (0,6; +∞) (0; 0,27)
    Показати відповідь
    Д.
  3. Розв’яжіть нерівність log3x<-1.
    АБВГД
    (;+∞) (-∞;) (-;0) (0;) (-∞ -3)
    Показати відповідь
    Г.
  4. Розв’яжіть нерівність log0,5(х-1)>2.
    АБВГД
    (1;1,25) (2;+∞) (1,25;+∞) (0;0,25) (-∞;1,25)
    Показати відповідь
    А.
  5. Розв’яжіть нерівність >2.
    АБВГД
    (-∞;) (;+∞) (0;) (10;+∞) (-∞;)
    Показати відповідь
    В.
  6. Розв’яжіть нерівність log0,55<log0,5x.
    АБВГД
    (-5;0) (0;5) (5;+∞) (0,5;5) (-∞;5)
    Показати відповідь
    Б.
  7. Розв’яжіть нерівність log0,4x≥log0,42.
    АБВГД
    (-∞;2] (0,4;2] (0;+∞) [2;+∞) (0;2]
    Показати відповідь
    Д.
  8. Розв’яжіть нерівність ⋅log4x>0.
    АБВГД
    (1;+∞) (0;4) (0;1) (4;+∞) (-∞;1)
    Показати відповідь
    В.
    Оскільки в першому логарифмі основа менше за 1, а підлогарифмічний вираз більше за 1, то значення даного логарифму менше 0.
  9. Розв’яжіть нерівність log2x<b, використавши рисунок.

    АБВГД
    (0;2b) (0;b) (-∞;2b) (log2b;+∞) (-∞;b)
    Показати відповідь
    А.
    Знайти, в якій точці значення функції дорівнює b.
  10. Розв’яжіть нерівності (1-4). Кожній нерівності поставте у відповідність множину всіх її розв’язків (А-Д).
    Нерівність Множина розв'язків
    1 5x-2>1
    2 >0
    3 log2x<1
    4 x2<4
    А (-∞;2)
    Б (-2;2)
    В (0;2)
    Г (-∞;-2)
    Д (2;+∞)
    Показати відповідь
    1-Д, 2-Г, 3-В, 4-Б.
    1)Звести до основи 5.
    4) Розв'язати методом інтервалів.
  11. Знайдіть кількість усіх цілих розв’язків нерівності ≥-2. Якщо нерівність має безліч цілих розв’язків, то у відповідь запишіть число 100.
    Показати відповідь
    4.
    Створити систему нерівностей і розв'язати нерівності методом інтервалів. Після цього знайти спільний розв'язок.
  12. Розв’яжіть нерівність lg≥0. У відповіді запишіть найбільший розв’язок цієї нерівності. Якщо найбільший розв’язок нерівності не існує, то у відповіді запишіть число 100.
    Показати відповідь
    3,5.
    Створити систему нерівностей. Звернути увагу на те, що розв'язки однієї з нерівностей повністю знаходяться серед розв'язків іншої.

Коментарі

Популярні публікації

Дійсні числа

Завдання. НМТ 2026 (демо). Кількість вироблених підприємством за рік столів відноситься до кількості виготовлених стільців як 3 : 4. Якою може бути сумарна кількість вироблених за рік підприємством столів і стільців? 72 87 91 95 101 Показати відповідь В . Якщо ввести коефіцієнт пропорційності х, то кількість столів буде 3х, а кількість стільців – 4х. Разом їх буде 3х + 4х = 7х. Отже, сумарна кількість вироблених за рік підприємством столів і стільців ділиться націло на 7, і лише число 91 задовольняє цій умові. Завдання. НМТ 2026 (демо). Узгодьте вираз (1– 3) із його значенням (А – Д), якщо m = -\frac{4}{3} 1 |𝑚 − 4| 2 4m −1 3 (3𝑚 + 1) 0 А –3 Б 1 В 0 Г 3 Д \frac{16}{3} Показати відповідь 1-Д, 2-А, 3-Б . 1. |-\frac{4}{3}-4|=|-\frac{4}{3}-\frac{12}{3}|=|\frac{-4-12}{3}|=|\frac{-16}{3}|=\frac{16}{3} 2. 4\cdot(-\frac{4}{3})^{-1} = 4\cdot (-\frac{3}{4}) = -3 (при зміні знака степеня дріб перевертається) 3. Кожне число, від'ємне від 0, в нульовій степені д...

Первісна функції

Правила інтегрування C⋅f(x)dx=C⋅ f(x)dx (f(x)&pm;g(x))dx= f(x)dx&pm; g(x)dx Таблиця первісних x n dx= +C dx=ln|x|+C sinxdx=-cosx+C cosxdx=sinx+C dx=tgx+C dx= -ctgx+C a x dx= +C e x dx=e x +C Завдання. НМТ 2026 (демо). Позначте формулу для визначення площі S фігури, обмеженої графіками функцій 𝑦 = 2 𝑥 , 𝑦 = 2 та прямою 𝑥 = 0 (див. рисунок). S=\int_{0}^{2}2^x{dx} S=\int_{0}^{1}2^x{dx} S=\int_{0}^{1}(2^x-2){dx} S=\int_{0}^{1}(2-2^x){dx} S=\int_{0}^{2}(2-2^x){dx} Показати відповідь Г . Так як фігура обмежена числами 0 та 1 по осі абсцис, то ці числа є межами інтегрування. На даному проміжку фігура обмежена згори лінією у = 2, знизу лінією 𝑦 = 2 𝑥 . Тоді за формулою обчислення площі фігури S=\int_{0}^{1}(2-2^x){dx} . НМТ 2024. На рисунку зображено графік функції Обчисліть значення виразу . Показати відповідь 31 . Скористатись геометричним змістом визначеного інтеграла. НМТ 2024. Обчисліть інтеграл . Показати відповідь 10 . Ск...

Комбінаторика

1. Правило додавання . Якщо І об'єкт можна обрати а способами, а ІІ - b способами, то обрати або І об'єкт або ІІ об'єкт можна a+b способами. 2. Правило множення . Якщо І об'єкт можна обрати а способами, а ІІ - b способами, то обрати і І об'єкт і ІІ об'єкт можна a⋅b способами. 3. Перестановки . Якщо з n об'єктів потрібно обрати всі n, то це можна зробити P n =n!=1⋅2⋅3⋅...⋅(n-1)⋅n способами. 4. Розміщення . Якщо з n об'єктів потрібно обрати m, причому порядок обрання важливий, то це можна зробити = способами. 5. Комбінації . Якщо з n об'єктів потрібно обрати m, причому порядок обрання не важливий, то це можна зробити = способами. Примітка . Скорочення факторіалів = =5⋅6⋅7=210 Завдання. НМТ 2026 (демо). У квітковому магазині є 12 білих та 25 червоних троянд. Покупець замовив у цьому магазині букет із двох білих троянд й однієї червоної. Скільки всього є варіантів такого вибору? Показати відповідь 1650 . Оскільки порядок вибору листіво...

Функції за графіками

Завдання. НМТ 2026 (демо). На якому рисунку зображено ескіз графіка квадратичної функції, що набуває лише додатних значень на всій області визначення? Показати відповідь Д . Якщо графік квадратичної функції набуває лише додатних значень на всій області визначення, то він повинен весь лежати вище осі х. Таккій умові задовольняє тільки графік Д. НМТ 2024. Графік однієї з наведених функцій проходить через точку, зображену на рисунку. Укажіть цю функцію. А Б В Г Д y = log 4 x y = x + 2 y = −x 2 Показати відповідь В . НМТ 2024. На рисунку зображено графік функції y = f(x), визначеної на проміжку [–3; 3]. У яких координатних чвертях розташований графік функції y = f(x – 4)? А Б В Г Д лише в І та ІІ лише в ІІ та ІІІ лише в ІІІ та ІV лише в І та ІV у всіх чвертях Показати відповідь Г . НМТ 2024. На рисунку зображено графік функції y = f(x), визначеної на відрізку [1; 9]. Доберіть до початку речення (1–3) його закінчення (А − Д) ...

Трикутники та їх властивості

Види трикутників За кутами Гострокутний - всі кути гострі (якщо a, b, c - сторони трикутника, причому с - найбільша, то c 2 <a 2 +b 2 ). Прямокутний - один з кутів прямий (якщо a, b, c - сторони трикутника, причому с - найбільша, то c 2 =a 2 +b 2 ). Тупокутний - один з кутів тупий (якщо a, b, c - сторони трикутника, причому с - найбільша, то c 2 >a 2 +b 2 ). За сторонами Різносторонній - всі сторони різні. Рівнобічний - дві сторони рівні (називаються бічними, третя - основою). Рівносторонній (правильний) - всі сторони рівні. Основні елементи трикутників Медіана - відрізок, який сполучає вершину трикутника з серединою протилежної сторони (ділить сторону навпіл). Медіани трикутника перетинаються в одній точці і точкою перетину діляться у відношенні 2:1, починаючи від вершини. Висота - відрізок, який проведений з вершини трикутника перпендикулярно до протилежної сторони. Бісектриса - відрізок, який проведено з вершини до протилежної сторони і який ділить к...

Рекомендований допис

Solving Linear Equations with One Variable: A Step-by-Step Guide

An equation is an equality that contains a variable. You are required to find a number that, when substituted for the variable, yields a correct numerical equality (the same numbers on the left and right sides of the equality). In other words, you need to find the solution of the equation . For example, in the equation 2x - 6x + 8 = 7x - 3, we can substitute 1 for the variable x and obtain a correct numerical equality, since 2(1) - 6(1) + 8 = 2 - 6 + 8 = 4 and 7(1) - 3 = 7 - 3 = 4. Therefore, x = 1 is a solution of the equation. When solving equations, we may encounter the following cases: the equation has no solution,one solution, or infinitely many solutions. In this post, we will look at how to solve equations that contain one variable to the first power. Such equations are called linear equations . To solve such equations, you can apply The Subtraction property of equality. If a = b, then a - c =b - c ; The Addition property of equality. If a = b, then a + c = b...