- НМТ 2024. (4x − 5)2 =
А Б В Г Д 16x2 − 40x + 25 16x2 − 25 16x2 − 20x + 25 16x2 + 25 4x2 − 40x + 25 Відповідь
А. - НМТ 2024. Розкладіть вираз 4x2 – 144 на множники.
А Б В Г Д (2x – 12)(2x + 12) (2x – 72)(2x + 72) (2x – 12)2 (2x – 72)2 2(x – 6)(x + 6) Відповідь
А. - НМТ 2023. Спростіть вираз .
А Б В Г Д 1 -1 Відповідь
Д. - Спростіть вираз 2(х+5у)-(4у-7х).
А Б В Г Д 9х+у 9х+14у -5х+6у 9х+6у 16х+2у Відповідь
Г.
9х+6у. - Обчисліть .
А Б В Г Д 10 Відповідь
А.
Винести спільний степінь за дужки і скоротити. - Спростіть вираз .
А Б В Г Д Відповідь
А.
Звести до одного дробу. - =
А Б В Г Д 5 15 125 375 675 Відповідь
Г.
Розкласти на множники і скоротити. - (а-4)2-а2 =
А Б В Г Д –8а + 16 8а + 16 16 –4а + 16 –4а + 8 Відповідь
А.
Скористатись формулами скороченого множення. - x+2(x-2) =
А Б В Г Д 3х-4 3х+4 3х 3х-2 2х-2 Відповідь
А.
3х-4. - Укажіть вираз, тотожно рівний виразу (2х-3)2+12х.
А Б В Г Д 4x2+12x-9 4x2+9 4x2-9 4x2+12x+9 4x2+6x+9 Відповідь
Б.
Скористатись формулами скороченого множення. - Якщо х2-y2 = 7 і 3х+3у = 63, то х-у =
А Б В Г Д 14 147 -3 Відповідь
Д.
Скористатись формулами скороченого множення. - Якщо , то = ?
А Б В Г Д Відповідь
Б.
Перевернути дроби. - Спростіть вираз -2ху2-(3ху2-2х2у) =
А Б В Г Д -5ху2+2х2у -5ху2-2х2у ху2-2х2у -6ху2+2х2у -3ху2 Відповідь
А.
Розкрити дужки. - Скоротіть дріб .
А Б В Г Д b Відповідь
А.
Скористатись формулами скороченого множення. - Спростіть вираз .
А Б В Г Д 0 Відповідь
А.
Звести до спільного знаменника, скористатись формулами скороченого множення. - .
А Б В Г Д 27x3y4 Відповідь
Д.
- Скоротіть дріб .
А Б В Г Д Відповідь
А.
- Спростіть вираз .
А Б В Г Д a18 a3 a8 a4 a16 Відповідь
Д.
Спочатку розкрити дужки. - Обчисліть .
А Б В Г Д Відповідь
Б.
Винести спільний степінь за дужки. - Спростіть вираз 0,8b9:(8b3), де b≠0.
А Б В Г Д 0,1b6 10b6 6,4b12 0,1b3 10b3 Відповідь
А.
Перетворити на дріб і скоротити. - Спростіть вираз .
А Б В Г Д 10x3y2 10x3 10x4y2 Відповідь
Б.
Замінити ділення добутком. - Спростіть вираз .
А Б В Г Д a a-2b a-b a+b a-2b2 Відповідь
Б.
Скористатись формулами скороченого множення. - Спростіть вираз .
А Б В Г Д a(a-1) -a2 -a(a+1) a(a+1) Відповідь
Д.
Замінити дріб діленням і перетворити ділення на добуток. - Якщо , то с =
А Б В Г Д a-b Відповідь
А.
Перенести дріб з с в ліву частину, інше в праву і звести до спільного знаменника. - Визначте m із співвідношення , де n ≠0.
А Б В Г Д m = 6n m = m = m = m = Відповідь
Б.
- Розкладіть вираз (x+y)2-9x2 на множники.
А Б В Г Д (-8х+у)(10х+у) (-2х-у)(4х-у) (-2х+у)(4х+у) (4х+у)2 (-2х+у)2 Відповідь
В.
Скористатись формулами скороченого множення. - Укажіть вираз, тотожно рівний виразу (2х+5)(3-х).
А Б В Г Д 15+х-2х2 15+х+2х2 15+6х-2х2 15+11х-2х2 15+11х+2х2 Відповідь
А.
Розкрити дужки. - Знайдіть вираз, тотожно рівний даному виразу х4+х3-х-1.
А Б В Г Д (х+1)2(х2+х+1) (х2-х+1)(х-1)2 (х-1)3 (х+1) (х-1)(х+1)3 (х2-1)(х2+х+1) Відповідь
Д.
Згрупувати попарно і винести спільний множник за дужки. - Укажіть вираз, тотожно рівний виразу х2+4.
А Б В Г Д (х+2)(х-2) х(х+4) (х+2)2+4х (х+2)2 (х-2)2+4х Відповідь
Д.
Перебрати відповіді, розкриваючи дужки. - Спростіть вираз .
А Б В Г Д 3-x Відповідь
А.
Скористатись формулами скороченого множення. - Спростіть вираз .
А Б В Г Д -1 a-4 a+4 1 (a-4)2 Відповідь
Б.
Звести в один дріб, скористатись формулами скороченого множення. - Спростіть вираз a(a+2b)-(a+b)2.
А Б В Г Д 4ab+b2 4ab-b2 -b2 2ab-b2 b2 Відповідь
В.
Скористатись формулами скороченого множення. - .
А Б В Г Д a+2 2a+1 a+1 2a a Відповідь
В.
Винести спільний множник за дужки. - 2(5x+6) =
А Б В Г Д 10x+12 10x+6 7x+8 7x+12 5x+8 Відповідь
А. - Спростіть вираз 2a-(3b-2a)
А Б В Г Д -3b 4a-3b -6ab-4a -6ab+4a -6ab-4a2 Відповідь
Б.
- 0,4x2⋅5x3 =
А Б В Г Д 2x6 20x5 2x5 0,2x5 0,2x6 Відповідь
В.
- Якщо , то 26-a =
А Б В Г Д 12,8 59 69 240 320 Відповідь
Д.
Звести до даного виразу. - Установіть відповідність між виразом (1-3) і тотожно рівним йому виразом (А-Д), якщо а — довільне додатне число, а≠1.
Вираз Тотожно рівний вираз 1 а4:а3
2
3 7-log7aА a2
Б a7
В
Г a
Д -aВідповідь
1-Г, 2-Д, 3-В .
Скористатись відповідними формулами. - Установіть відповідність між твердженнями про дріб (1-4) та дробом (А-Д), для якого це твердження є правильним.
Твердження Дріб 1 є скоротним
2 є неправильним
3 менший за 0,5
4 є оберненим до дробуА
Б
В
Г
ДВідповідь
1-Д, 2-В, 3-Б, 4-А .
Перебирати дроби, визначати до яких умов підходять. - Установіть відповідність між виразами (1-4) та їхніми значеннями, якщо х = 0,5 (А-Д).
Вираз Значення виразу 1
2 (x-5)2+5(2x-5)
3
4 ⋅А -2,5
Б -0,25
В 0,25
Г 1,5
Д 2,5Відповідь
1-А, 2-В, 3-Г, 4-Б .
Скористатись формулами скороченого множення, спростити і підставити значення. - Установіть відповідність між заданими виразами (1-4) та виразами, що їм тотожно дорівнюють (А-Д).
Вираз Тотожний вираз 1 (2a+b) 2
2 (2a-b)(b+2a)
3 (a-2b) 2
4 (a+2b)(2a-b)А 4a2-b2
Б 4b2-2ab+a2
В 2a2+3ab-2b2
Г 4a2+4ab+b2
Д 4b2-4ab+a2Відповідь
1-Г, 2-А, 3-Д, 4-В .
Скористатись формулами скороченого множення. - До кожного виразу (1-4) при a>0 доберіть тотожно йому рівний (А-Д).
Вираз Тотожний вираз 1
2 (2a)5⋅a6
3 (2a6)5
4А 32a11
Б
В
Г 2a-1
Д 32a30Відповідь
1-Г, 2-А, 3-Д, 4-Б .
Скористатись відповідними формулами для дії зі степенями. - Відомо, що . Тоді
- a+2b =
- a3+(2b) 3+3a⋅2b(a+2b) =
Відповідь
9; 729 .
Скористатись формулами скороченого множення, спростити і підставити значення. - Обчисліть значення виразу при a = 0,25, b = 4,5.
Відповідь
0,75.
Скористатись формулами скороченого множення, спростити і підставити значення. - Обчисліть значення виразу , якщо a = 10,2, b = -0,2.
Відповідь
-0,204.
Скористатись формулами скороченого множення, спростити і підставити значення. - Знайдіть значення виразу , якщо m = 4,25.
Відповідь
-1,6.
Скористатись формулами скороченого множення, спростити і підставити значення. - Спростіть вираз 2(a2-5ab+4b2)-3(2a2-2ab+3b2) та обчисліть його значення, якщо a = 1,1, b = 0,8.
Відповідь
-9.
Скористатись формулами скороченого множення, спростити і підставити значення. - Обчисліть значення виразу -(a2+b2) , якщо a = , b =
Відповідь
-16.
Скористатись формулами скороченого множення, спростити і підставити значення. - Відомо, що , де 0<x<y. У скільки разів число у більше за число х?
Відповідь
2,5.
Виразити у через х.
Формули скороченого множення
(a-b)2 = a2-2ab+b2
(a+b)2 = a2+2ab+b2
a2-b2 = (a-b)(a+b)
a3-b3 = (a-b)(a2+ab+b2)
a3+b3 = (a+b)(a2-ab+b2)
(a-b)3 = a3-3a2b+3ab2-b3
(a+b)3 = a3+3a2b+3ab2+b3
(a-b)2 = a2-2ab+b2
(a+b)2 = a2+2ab+b2
a2-b2 = (a-b)(a+b)
a3-b3 = (a-b)(a2+ab+b2)
a3+b3 = (a+b)(a2-ab+b2)
(a-b)3 = a3-3a2b+3ab2-b3
(a+b)3 = a3+3a2b+3ab2+b3
Правильну відповідь можна дізнатися, натискаючи кнопку Відповідь під завданням. Послуга ознайомлення з повними розв’язаннями завдань з цієї теми коштує 100 грн. Для отримання цієї послуги надішліть зі своєї електронної пошти листа на адресу ssychov@gmail.com з вказівкою теми "1.4. Дії з дробами та многочленами". У відповідь Вам надійде розрахунковий рахунок для переказу коштів. Після оплати надішліть скріншот квитанції і на Вашу адресу надійдуть розв’язки у pdf-форматі. Для перегляду зразка розв’язання натисніть кнопку нижче.
Немає коментарів:
Дописати коментар