Перейти до основного вмісту

Теорія ймовірностей

    Ймовірність події А обчислюється за формулою Р(А)=, де m - кількість випадків, які сприяють появі події А, n - кількість всіх можливих випадків
  1. НМТ 2024. У салоні пасажирського літака 20 рядів, у кожному з яких розташовано по 3 крісла обабіч проходу (див. рисунок). Реєструючи пасажира, електронна система навмання вибирає для нього посадкове місце. Яка імовірність того, що першому зареєстрованому пасажиру дістанеться місце біля проходу?
    АБВГД
    Показати відповідь
    В.

  2. Із гаманця, у якому лежать 5 монет номіналом по 10 копійок, 12 монет — по 25 копійок, 3 монети — по 1 гривні, беруть навмання одну монету. Обчисліть ймовірність того, що її номінал буде менше 50 копійок.
    АБВГД
    1
    Показати відповідь
    А.
  3. У кіоску продають морозиво 12 різних видів, з них 4 види — з горіхами, решта — фруктові. Яка ймовірність того, що вибраний навмання покупцем один вид морозива буде фруктовим?
    АБВГД
    Показати відповідь
    В.
  4. Випущено партію з 300 лотерейних білетів. Імовірність того, що навмання вибраний білет із цієї партії буде виграшним, дорівнює 0,2. Визначте кількість білетів без виграшу серед цих 300 білетів.
    АБВГД
    6 60 294 150 240
    Показати відповідь
    Д.
  5. У лотереї 10 виграшних білетів і 290 білетів без виграшу. Яка ймовірність того, що перший придбаний білет цієї лотереї буде виграшним?
    АБВГД
    Показати відповідь
    Г.
  6. На полиці розміщено 16 книг, з яких 6 книг — історичні романи, а решта — детективи. Знайдіть імовірність того, що перша книга, навмання взята з полиці, буде детективом.
    АБВГД
    Показати відповідь
    А.
  7. Комп’ютерна програма видаляє у восьмицифровому числі одну цифру навмання. Яка ймовірність того, що в числі 12506975 буде видалено цифру 5?
    АБВГД
    Показати відповідь
    Д.
  8. Власник банкоматної картки забув останні дві цифри свого PIN-коду, але пам’ятає, що вони різні. Знайдіть імовірність того, що з першої спроби він отримає доступ до системи.
    АБВГД
    Показати відповідь
    Г.
  9. Майстер обслуговує лише три верстати: 20% робочого часу він обслуговує перший верстат, 30% - другий, 50%-третій. Обчисліть ймовірність того, що в навмання вибраний момент робочого часу майстер обслуговує перший або третій верстат.
    АБВГД
    0,8 0,7 0,5 0,3 0,1
    Показати відповідь
    Б.
  10. На виборах президента школи балотуються три кандидати: Наталя, Микола й Антон. За результатами опитування ймовірність того, що переможе Антон, дорівнює ймовірності того, що переможе Микола, й вдвічі менша за ймовірність того, що переможе Наталя. Якою за результатами опитування є ймовірність того, що президентом школи оберуть Миколу?
    Показати відповідь
    0,25.
  11. У першому класі 15 дівчаток, з яких лише одна на ім’я Дарина, і 11 хлопчиків. На першому уроці вчителька навмання формує пари дітей, які сидітимуть за однією партою. Першою вона обирає пару для Дарини. Яка ймовірність того, що Дарина сидітиме за однією партою з дівчинкою?
    Показати відповідь
    0,56.
  12. На діаграмі відображено інформацію про результати складання письмового заліку студентами певної групи. Комісія з якості освіти розпочинає перевірку відповідності виставлених оцінок змісту залікових робіт студентів і відбирає для перевірки декілька робіт навмання. Яка ймовірність того, що першою буде відібрано роботу з оцінкою D? Отриману відповідь округліть до сотих.

    Показати відповідь
    0,13.
  13. Для участі в роботі студентської ради з кожної з двох груп навмання вибирають по 1 студенту. Серед 24 студентів першої групи проживають у гуртожитку 6 студентів, а серед 28 студентів другої групи — 14 студентів. Яка ймовірність того, що обидва вибрані для роботи в раді студенти будуть з тих, хто проживає в гуртожитку.
    Показати відповідь
    0,125.
  14. Спортсмен робить один постріл у мішень. Імовірність того, що він улучить у мішень, у 7 разів більша за ймовірність того, що він у неї не влучить. Обчисліть імовірність того, що спортсмен улучить у мішень.
    Показати відповідь
    0,875.
  15. У відділі працює певна кількість чоловіків і жінок. Для анкетування навмання вибрали одного із співробітників. Імовірність того, що це чоловік, дорівнює . Знайдіть відношення кількості жінок до кількості чоловіків, які працюють у цьому відділі.
    Показати відповідь
    2,5.
  16. У торбинці лежать 3 цукерки з молочного шоколаду та m цукерок з чорного шоколаду. Усі цукерки — однакової форми й розміру. Якого найменшого значення може набувати m, якщо ймовірність навмання витягнути з торбинки цукерку з молочного шоколаду менша за 0,25?
    Показати відповідь
    10.
    Знайти ймовірність того, що навмання витягнута з торбинки цукерка є з молочного шоколаду дорівнює, порівняти із заданою і розв'язати отриману нерівність.
  17. В автобусному парку налічується n автобусів, шосту частину яких було обладнано інформаційними табло. Пізніше інформаційні табло встановили ще на 4 автобуси з наявних у парку. Після проведеного переобладнання навмання вибирають один з n автобусів парку. Ймовірність того, що це буде автобус з інформаційним табло, становить 0,25. Визначте n. Уважайте, що кожен автобус обладнується лише одним табло.
    Показати відповідь
    48. Знайти ймовірність того, що навмання вибраний автобус з інформаційним табло, порівняти із заданою і розв'язати отримане рівняння.
  18. У фестивалі беруть участь 25 гуртів, серед яких є по одному гурту з України і Чехії. Порядок виступу гуртів визначається жеребкуванням, за яким кожен із гуртів має однакові шанси отримати будь-який порядковий номер від 1 до 25. Знайдіть імовірність того, що на цьому фестивалі гурт з України виступатиме першим, а порядковий номер виступу гурту з Чехії буде парним.
    Показати відповідь
    0,02.
    Знайти спочатку окремо ймовірність того, що гурт з України виступатиме першим, і ймовірність того, що порядковий номер виступу гурту з Чехії буде парним (за умови, що гурт з України виступатиме першим).
  19. Пасічник зберігає мед в однакових закритих металевих бідонах. Їх у нього дванадцять: у трьох бідонах міститься квітковий мед, у чотирьох — мед із липи, у п’яти — мед із гречки. Знайдіть імовірність того, що перший навмання відкритий бідон буде містити квітковий мед.
    Показати відповідь
    0,25.
  20. У коробці є 80 цукерок, з яких 44 — з чорного шоколаду, а решта — з білого. Визначте ймовірність того, що навмання взята цукерка з коробки буде з білого шоколаду.
    Показати відповідь
    0,45.

Коментарі

Анонім каже…
добрий день ,як купити розвязки?
Анонім каже…
Для отримання послуги ознайомлення з повними розв’язаннями завдань з теми надішліть зі своєї електронної пошти листа на адресу ssychov@gmail.com з вказівкою номера та назви теми. У відповідь Вам надійде розрахунковий рахунок для переказу коштів. Після оплати надішліть скріншот квитанції і на Вашу адресу надійдуть розв’язки у pdf-форматі.

Популярні публікації

Функції за графіками

Завдання. НМТ 2026 (демо). На якому рисунку зображено ескіз графіка квадратичної функції, що набуває лише додатних значень на всій області визначення? Показати відповідь Д . Якщо графік квадратичної функції набуває лише додатних значень на всій області визначення, то він повинен весь лежати вище осі х. Таккій умові задовольняє тільки графік Д. НМТ 2024. Графік однієї з наведених функцій проходить через точку, зображену на рисунку. Укажіть цю функцію. А Б В Г Д y = log 4 x y = x + 2 y = −x 2 Показати відповідь В . НМТ 2024. На рисунку зображено графік функції y = f(x), визначеної на проміжку [–3; 3]. У яких координатних чвертях розташований графік функції y = f(x – 4)? А Б В Г Д лише в І та ІІ лише в ІІ та ІІІ лише в ІІІ та ІV лише в І та ІV у всіх чвертях Показати відповідь Г . НМТ 2024. На рисунку зображено графік функції y = f(x), визначеної на відрізку [1; 9]. Доберіть до початку речення (1–3) його закінчення (А − Д) ...

Первісна функції

Правила інтегрування C⋅f(x)dx=C⋅ f(x)dx (f(x)±g(x))dx= f(x)dx± g(x)dx Таблиця первісних x n dx= +C dx=ln|x|+C sinxdx=-cosx+C cosxdx=sinx+C dx=tgx+C dx= -ctgx+C a x dx= +C e x dx=e x +C Завдання. НМТ 2026 (демо). Позначте формулу для визначення площі S фігури, обмеженої графіками функцій 𝑦 = 2 𝑥 , 𝑦 = 2 та прямою 𝑥 = 0 (див. рисунок). S=\int_{0}^{2}2^x{dx} S=\int_{0}^{1}2^x{dx} S=\int_{0}^{1}(2^x-2){dx} S=\int_{0}^{1}(2-2^x){dx} S=\int_{0}^{2}(2-2^x){dx} Показати відповідь Г . Так як фігура обмежена числами 0 та 1 по осі абсцис, то ці числа є межами інтегрування. На даному проміжку фігура обмежена згори лінією у = 2, знизу лінією 𝑦 = 2 𝑥 . Тоді за формулою обчислення площі фігури S=\int_{0}^{1}(2-2^x){dx} . НМТ 2024. На рисунку зображено графік функції Обчисліть значення виразу . Відповідь 31 . Скористатись геометричним змістом визначеного інтеграла. НМТ 2024. Обчисліть інтеграл . Відповідь 10 . Скористатись форму...

Дійсні числа

Завдання. НМТ 2026 (демо). Кількість вироблених підприємством за рік столів відноситься до кількості виготовлених стільців як 3 : 4. Якою може бути сумарна кількість вироблених за рік підприємством столів і стільців? 72 87 91 95 101 Показати відповідь В . Якщо ввести коефіцієнт пропорційності х, то кількість столів буде 3х, а кількість стільців – 4х. Разом їх буде 3х + 4х = 7х. Отже, сумарна кількість вироблених за рік підприємством столів і стільців ділиться націло на 7, і лише число 91 задовольняє цій умові. Завдання. НМТ 2026 (демо). Узгодьте вираз (1– 3) із його значенням (А – Д), якщо m = -\frac{4}{3} 1 |𝑚 − 4| 2 4m −1 3 (3𝑚 + 1) 0 А –3 Б 1 В 0 Г 3 Д \frac{16}{3} Показати відповідь 1-Д, 2-А, 3-Б . 1. |-\frac{4}{3}-4|=|-\frac{4}{3}-\frac{12}{3}|=|\frac{-4-12}{3}|=|\frac{-16}{3}|=\frac{16}{3} 2. 4\cdot(-\frac{4}{3})^{-1} = 4\cdot (-\frac{3}{4}) = -3 (при зміні знака степеня дріб перевертається) 3. Кожне число, від'ємне від 0, в нульовій степені д...

Комбінаторика

1. Правило додавання . Якщо І об'єкт можна обрати а способами, а ІІ - b способами, то обрати або І об'єкт або ІІ об'єкт можна a+b способами. 2. Правило множення . Якщо І об'єкт можна обрати а способами, а ІІ - b способами, то обрати і І об'єкт і ІІ об'єкт можна a⋅b способами. 3. Перестановки . Якщо з n об'єктів потрібно обрати всі n, то це можна зробити P n =n!=1⋅2⋅3⋅...⋅(n-1)⋅n способами. 4. Розміщення . Якщо з n об'єктів потрібно обрати m, причому порядок обрання важливий, то це можна зробити = способами. 5. Комбінації . Якщо з n об'єктів потрібно обрати m, причому порядок обрання не важливий, то це можна зробити = способами. Примітка . Скорочення факторіалів = =5⋅6⋅7=210 Завдання. НМТ 2026 (демо). У квітковому магазині є 12 білих та 25 червоних троянд. Покупець замовив у цьому магазині букет із двох білих троянд й однієї червоної. Скільки всього є варіантів такого вибору? Показати відповідь 1650 . Оскільки порядок вибору листіво...

Тригонометричні вирази

Функція 0 o 30 o 45 o 60 o 90 o 180 o 270 o sin 0 1 0 -1 cos 1 0 -1 0 tg 0 1 не існує 0 не існує сtg не існує 1 0 не існує 0 Знаходження значень невідомих тригонометричних функцій за відомими: sin 2 α+cos 2 α = 1 tgαctgα = 1 1+tg 2 α = 1+ctg 2 α = tgα = ctgα = Тригонометричні функції суми кутів: sin(α+β) = sinα⋅cosβ+cosα⋅sinβ sin(α-β) = sinα⋅cosβ-cosα⋅sinβ cos(α+β) = cosα⋅cosβ-sinα⋅sinβ cos(α-β) = cosα⋅cosβ+sinα⋅sinβ tg(α+β) = tg(α-β) = Формули зведення: 1. Визначити знак функції для даного кута. Функція (0,90 o ) (90 o ,180 o ) (180 o ,270 o ) (270 o ,360 o ) sin + + - - cos + - - + tg,ctg + - + - 2. Якщо перехід здійснено через π, 2π функцію ...