Перейти до основного вмісту

7 клас. Геометрія. Основні геометричні фігури на площині

Основні геометричні фігури на площині:

  1. Точка, позначається великими буквами латинського алфавіту A (читають "А"), B (читають "Бе"), C (читають "Це") і т.д.
  2. Пряма, може позначатися:
    • маленькими буквами латинського алфавіту a, b, c і т.д.
    • назвами двох точок, через які проходить пряма: наприклад, на малюнку пряму a можна назвати АC
пряма та точка, line and point

Якщо пряма a проходить через точку B, то кажуть що точка B належить прямій a і позначають B ∈ a. Якщо пряма b не проходить через точку D, то кажуть що точка D не належить прямій b і позначають D ∉ b. На малюнку A ∈ a, C ∈ a, B ∉ a.

Інші геометричні фігури на площині:

  1. Промінь - частина прямої, що обмежена з одного боку точкою, яка називається початком променя. Промені позначають двома великими буквами латинського алфавіту, причому перша - обов'язково початок променя, друга - будь-яка точка, що належить променю. На малюнку нижче показано промінь АС (не СА).
  2. Відрізок - частина прямої, що обмежена з обох боків точками, які називаються кінцями відрізка. Відрізок позначають назвами кінців відрізків в будь-якому порядку. На малюнку нижче показан відрізок BD або DB.
  3. Кут - геометрична фігура, що складається з двох променів (сторони кута), що виходять з однієї точки (вершина кута). Кут позначають або назвою вершини кута, або трьома точками, з яких середня - вершина кута, а дві інші - по кожній точці з кожної сторони кута. На малюнку нижче показано кут, який можна позначит: ∠O, ∠EOF або ∠FOE.
промінь, відрізок та кут; ray, segment and angle

Коментарі

Популярні публікації

Функції за графіками

Завдання. НМТ 2026 (демо). На якому рисунку зображено ескіз графіка квадратичної функції, що набуває лише додатних значень на всій області визначення? Показати відповідь Д . Якщо графік квадратичної функції набуває лише додатних значень на всій області визначення, то він повинен весь лежати вище осі х. Таккій умові задовольняє тільки графік Д. НМТ 2024. Графік однієї з наведених функцій проходить через точку, зображену на рисунку. Укажіть цю функцію. А Б В Г Д y = log 4 x y = x + 2 y = −x 2 Показати відповідь В . НМТ 2024. На рисунку зображено графік функції y = f(x), визначеної на проміжку [–3; 3]. У яких координатних чвертях розташований графік функції y = f(x – 4)? А Б В Г Д лише в І та ІІ лише в ІІ та ІІІ лише в ІІІ та ІV лише в І та ІV у всіх чвертях Показати відповідь Г . НМТ 2024. На рисунку зображено графік функції y = f(x), визначеної на відрізку [1; 9]. Доберіть до початку речення (1–3) його закінчення (А − Д) ...

Комбінаторика

1. Правило додавання . Якщо І об'єкт можна обрати а способами, а ІІ - b способами, то обрати або І об'єкт або ІІ об'єкт можна a+b способами. 2. Правило множення . Якщо І об'єкт можна обрати а способами, а ІІ - b способами, то обрати і І об'єкт і ІІ об'єкт можна a⋅b способами. 3. Перестановки . Якщо з n об'єктів потрібно обрати всі n, то це можна зробити P n =n!=1⋅2⋅3⋅...⋅(n-1)⋅n способами. 4. Розміщення . Якщо з n об'єктів потрібно обрати m, причому порядок обрання важливий, то це можна зробити = способами. 5. Комбінації . Якщо з n об'єктів потрібно обрати m, причому порядок обрання не важливий, то це можна зробити = способами. Примітка . Скорочення факторіалів = =5⋅6⋅7=210 Завдання. НМТ 2026 (демо). У квітковому магазині є 12 білих та 25 червоних троянд. Покупець замовив у цьому магазині букет із двох білих троянд й однієї червоної. Скільки всього є варіантів такого вибору? Показати відповідь 1650 . Оскільки порядок вибору листіво...

Первісна функції

Правила інтегрування C⋅f(x)dx=C⋅ f(x)dx (f(x)±g(x))dx= f(x)dx± g(x)dx Таблиця первісних x n dx= +C dx=ln|x|+C sinxdx=-cosx+C cosxdx=sinx+C dx=tgx+C dx= -ctgx+C a x dx= +C e x dx=e x +C Завдання. НМТ 2026 (демо). Позначте формулу для визначення площі S фігури, обмеженої графіками функцій 𝑦 = 2 𝑥 , 𝑦 = 2 та прямою 𝑥 = 0 (див. рисунок). S=\int_{0}^{2}2^x{dx} S=\int_{0}^{1}2^x{dx} S=\int_{0}^{1}(2^x-2){dx} S=\int_{0}^{1}(2-2^x){dx} S=\int_{0}^{2}(2-2^x){dx} Показати відповідь Г . Так як фігура обмежена числами 0 та 1 по осі абсцис, то ці числа є межами інтегрування. На даному проміжку фігура обмежена згори лінією у = 2, знизу лінією 𝑦 = 2 𝑥 . Тоді за формулою обчислення площі фігури S=\int_{0}^{1}(2-2^x){dx} . НМТ 2024. На рисунку зображено графік функції Обчисліть значення виразу . Відповідь 31 . Скористатись геометричним змістом визначеного інтеграла. НМТ 2024. Обчисліть інтеграл . Відповідь 10 . Скористатись форму...

Дійсні числа

Завдання. НМТ 2026 (демо). Кількість вироблених підприємством за рік столів відноситься до кількості виготовлених стільців як 3 : 4. Якою може бути сумарна кількість вироблених за рік підприємством столів і стільців? 72 87 91 95 101 Показати відповідь В . Якщо ввести коефіцієнт пропорційності х, то кількість столів буде 3х, а кількість стільців – 4х. Разом їх буде 3х + 4х = 7х. Отже, сумарна кількість вироблених за рік підприємством столів і стільців ділиться націло на 7, і лише число 91 задовольняє цій умові. Завдання. НМТ 2026 (демо). Узгодьте вираз (1– 3) із його значенням (А – Д), якщо m = -\frac{4}{3} 1 |𝑚 − 4| 2 4m −1 3 (3𝑚 + 1) 0 А –3 Б 1 В 0 Г 3 Д \frac{16}{3} Показати відповідь 1-Д, 2-А, 3-Б . 1. |-\frac{4}{3}-4|=|-\frac{4}{3}-\frac{12}{3}|=|\frac{-4-12}{3}|=|\frac{-16}{3}|=\frac{16}{3} 2. 4\cdot(-\frac{4}{3})^{-1} = 4\cdot (-\frac{3}{4}) = -3 (при зміні знака степеня дріб перевертається) 3. Кожне число, від'ємне від 0, в нульовій степені д...

Рівняння та нерівності підвищеного рівня (з параметром)

Завдання. НМТ 2026 (демо). За якого найбільшого значення a рівняння 3 x + (4a 2 + 10a) ⋅ 3 -x = 4a + 5 не має коренів?. Показати відповідь -2,5 . 3 x + (4a 2 + 10a) ⋅ 3 -x = 4a + 5 Помножимо обидві частини рівності на 3 x 3 2x + 4a 2 + 10a = (4a + 5)3 x Нехай 3 x = t. Так як 3 x >0, то t >0 t 2 + 4a 2 + 10a = (4a + 5)t t 2 - (4a + 5)t + 4a 2 + 10a = 0 D = (4a + 5) 2 - 4 ⋅ 1 ⋅ (4a 2 + 10a) = 16a 2 + 40a + 25 - 16a 2 - 40a = 25 t_1 = \frac{4a+5-\sqrt{25}}{2\cdot1} = \frac{4a+5-5}{2} = \frac{4a}{2} = 2a t_2 = \frac{4a+5+\sqrt{25}}{2\cdot1} = \frac{4a+5+5}{2} = \frac{4a+10}{2} = \frac{2(2a+5)}{2} = 2a+5 Рівняння не має коренів, якщо обидва ці корені не відповідають умові t >0, тобто при t ≤ 0. 2a ≤ 0 a ≤ 0 : 2 a ≤ 0 2a + 5 ≤ 0 2a ≤ - 5 a ≤ - 5 : 2 a ≤ - 2,5 Числова пряма з точками t -2,5 0 Отже рівняння не має коренів при a ∈ (-∞ -2,5]. Найбільше значення з цього проміжку ...

Рекомендований допис

Solving Linear Equations with One Variable: A Step-by-Step Guide

An equation is an equality that contains a variable. You are required to find a number that, when substituted for the variable, yields a correct numerical equality (the same numbers on the left and right sides of the equality). In other words, you need to find the solution of the equation . For example, in the equation 2x - 6x + 8 = 7x - 3, we can substitute 1 for the variable x and obtain a correct numerical equality, since 2(1) - 6(1) + 8 = 2 - 6 + 8 = 4 and 7(1) - 3 = 7 - 3 = 4. Therefore, x = 1 is a solution of the equation. When solving equations, we may encounter the following cases: the equation has no solution,one solution, or infinitely many solutions. In this post, we will look at how to solve equations that contain one variable to the first power. Such equations are called linear equations . To solve such equations, you can apply The Subtraction property of equality. If a = b, then a - c =b - c ; The Addition property of equality. If a = b, then a + c = b...