Перейти до основного вмісту

Тіла обертання

  1. НМТ 2024. На рисунку зображено циліндр, прямокутник ABCD – його осьовий переріз. Укажіть відрізок, який є твірною цього циліндра.
    АБВГД
    AD BC AC BD AB
    Показати відповідь
    Д.
  2. НМТ 2023. Доберіть закінчення речення так, щоб утворилося правильне твердження: "Циліндр утворений обертанням ...
    АБВГД
    квадрата навколо його сторони" прямокутника навколо його діагоналі" прямокутного трикутника навколо його гіпотенузи" прямокутного трикутника навколо його катета" квадрата навколо його діагоналі"
    Показати відповідь
    А.

  3. Радіус основи конуса дорівнює 4, його висота — h, а твірна — l. Укажіть серед наведених правильне співвідношення для h і l.
    АБВГД
    16+h2=l2 4+h=l 16-h2=l2 h2-l2=16 8+h2=l2
    Показати відповідь
    А.
    Застосувати теорему Піфагора.
  4. Радіус основи конуса дорівнює r, твірна — l. Твірна утворює з висотою конуса кут 60o (див. рисунок). Визначте

    АБВГД
    =2
    Показати відповідь
    А.
    Застосувати співвідношення у прямокутному трикутнику.
  5. Точки А та В лежать на сфері радіуса 10 см. Укажіть найбільше можливе значення довжини відрізка АВ.
    АБВГ
    20 см 100π см 10 см 20π см
    Показати відповідь
    А.
  6. Пластикові кульки радіуса 6 см зберігають у висувній шухлядці, що має форму прямокутного паралелепіпеда (див. рисунок). Якою з наведених може бути висота h цієї шухлядки?

    АБВГ
    3 см 6 см 10 см 13 см
    Показати відповідь
    Г.
  7. Переріз кулі площиною має площу 81π см2. Знайдіть відстань від центра кулі до площини перерізу, якщо радіус кулі дорівнює 15 см.
    АБВГД
    6 см 8 см 9 см 12 см 15 см
    Показати відповідь
    Г. Знайти радіус перерізу, застосувати теорему Піфагора.
  8. Довжина кола основи конуса дорівнює 36π, твірна нахилена до площини основи під кутом 30o . Установіть відповідність між відрізком (1–3) і його довжиною (А – Д).
    ВідрізокДовжина
    1 радіус основи конуса
    2 висота конуса
    3 радіус сектора, що є розгорткою бічної поверхні конуса
    А 6
    Б 18
    В 12
    Г 6
    Д 36
    Показати відповідь
    1-Б, 2-А, 3-В. 3) Радіусом сектора, що є розгорткою бічної поверхні конуса, є твірна конуса.
  9. Установіть відповідність між вимірами циліндра (1-3) та правильним щодо нього твердженням (А-Д).
    Виміри циліндра Твердження щодо циліндра
    1 радіус основи дорівнює 6, висота - 4
    2 радіус основи дорівнює 2, висота - 6
    3 радіус основи дорівнює 4, висота - 6
    А циліндр утворено обертанням прямокутника зі сторонами 4 та 6 навколо більшої сторони
    Б площа основи циліндра дорівнює 12π
    В твірна циліндра дорівнює 4
    Г площа бічної поверхні циліндра дорівнює 24π
    Д об’єм циліндра дорівнює 48π
    Показати відповідь
    1-В, 2-Г, 3-А.
  10. Установіть відповідність між фігурою (1-4) і тілом обертання (А-Д), утвореним унаслідок обертання цієї фігури навколо прямої, зображеної пунктиром.

    Показати відповідь
    1-А, 2-Г, 3-В, 4-Б.
  11. Установіть відповідність між фігурою (1-4) і тілом обертання (А-Д), яке утворено внаслідок обертання цієї фігури навколо прямої, зображеної пунктиром.

    Показати відповідь
    1-Г, 2-А, 3-В, 4-Д.
  12. Довжина кола основи конуса дорівнює 8π см. Знайдіть довжину твірної конуса, якщо його висота дорівнює 3 см.
    Показати відповідь
    5. Знайти радіус основи, застосувати теорему Піфагора.

Коментарі

Популярні публікації

Первісна функції

Правила інтегрування C⋅f(x)dx=C⋅ f(x)dx (f(x)±g(x))dx= f(x)dx± g(x)dx Таблиця первісних x n dx= +C dx=ln|x|+C sinxdx=-cosx+C cosxdx=sinx+C dx=tgx+C dx= -ctgx+C a x dx= +C e x dx=e x +C НМТ 2024. На рисунку зображено графік функції Обчисліть значення виразу . Відповідь 31 . Скористатись геометричним змістом визначеного інтеграла. НМТ 2024. Обчисліть інтеграл . Відповідь 10 . Скористатись формулою скороченого множення. НМТ 2023. Якщо функція F(x)=x 3 +4 є однією з первісних функції f(x), то f(x)= А Б В Г Д 3x 2 +4 3x 2 3x 2x 2 Відповідь Б . Яка з наведених функцій є первісною для функції f(x)=х -4 ? А Б В Г Д F(x)= F(x)= F(x)= F(x)= F(x)= Відповідь Д . Функція F(x)=10x 5 -4 є первісною функції f(x). Укажіть функцію G(x), яка також є первісною функції f(x). А Б В Г Д G(x)= 10x 5 +7 G(x)= 2x 6 -4x G(x)=50x 6 G(x)=50x 4 G(x)= x 5 -4 Відповідь А . Якщо ...

Дійсні числа

Завдання 1. НМТ. Маса протона наближено дорівнює 1,67 ∙ 10 −27 кг. Визначте наближену масу (кг) 100 протонів. 167 ∙ 10 −25 1,67 ∙ 10 −25 1,67 ∙ 10 −29 1,67 ∙ 10 −2700 1,67 ∙ 10 25 Показати відповідь Б . 100 ∙ 1,67 ∙ 10 −27 = 1,67 ∙ 100 ∙ 10 −27 = 1,67 ∙ 10 2 ∙ 10 −27 = 1,67 ∙ 10 2 + (-27) = 1,67 ∙ 10 −25 (використали властивість множення степенів з однаковими основами). Завдання 2. НМТ. Узгодьте вираз (1–3) із твердженням (А − Д) щодо значення цього виразу. 1 \frac{\pi}{3} 2 sin(\frac{7\pi}{2}) 3 π cos 90° А є ірраціональним числом Б є натуральним числом В є цілим від’ємним числом Г є раціональним числом, що не є цілим Д дорівнює 0 Показати відповідь 1-А, 2-В, 3-Б . 1. Є ірраціональним числом. 2. sin(\frac{7\pi}{2}) = sin(\frac{7\pi}{2} - 2\pi) = sin(\frac{7\pi}{2} - \frac{4\pi}{2}) = sin(\frac{3\pi}{2}) = - 1 (використали властивість періодичності функції sinx). -1 є цілим від’ємним числом. 3. π cos 90° = π 0 = 1. 1 є натуральни...

Функції за графіками

НМТ 2024. Графік однієї з наведених функцій проходить через точку, зображену на рисунку. Укажіть цю функцію. А Б В Г Д y = log 4 x y = x + 2 y = −x 2 Показати відповідь В . НМТ 2024. На рисунку зображено графік функції y = f(x), визначеної на проміжку [–3; 3]. У яких координатних чвертях розташований графік функції y = f(x – 4)? А Б В Г Д лише в І та ІІ лише в ІІ та ІІІ лише в ІІІ та ІV лише в І та ІV у всіх чвертях Показати відповідь Г . НМТ 2024. На рисунку зображено графік функції y = f(x), визначеної на відрізку [1; 9]. Доберіть до початку речення (1–3) його закінчення (А − Д) так, щоб утворилося правильне твердження. Початок речення Закінчення речення 1 Найбільше значення функції y = f(x) на відрізку [1; 9] дорівнює 2 Найменше значення функції y = f(x) на відрізку [1; 3] дорівнює 3 Найбільше ціле значення x, за якого справджується нерівність f(x)<0, дорівнює А −1. Б 9. В 6. Г 7. Д 5. Показати відпові...

Комбінаторика

1. Правило додавання . Якщо І об'єкт можна обрати а способами, а ІІ - b способами, то обрати або І об'єкт або ІІ об'єкт можна a+b способами. 2. Правило множення . Якщо І об'єкт можна обрати а способами, а ІІ - b способами, то обрати і І об'єкт і ІІ об'єкт можна a⋅b способами. 3. Перестановки . Якщо з n об'єктів потрібно обрати всі n, то це можна зробити P n =n!=1⋅2⋅3⋅...⋅(n-1)⋅n способами. 4. Розміщення . Якщо з n об'єктів потрібно обрати m, причому порядок обрання важливий, то це можна зробити = способами. 5. Комбінації . Якщо з n об'єктів потрібно обрати m, причому порядок обрання не важливий, то це можна зробити = способами. Примітка . Скорочення факторіалів = =5⋅6⋅7=210 НМТ 2024. Заступник директора школи складає розклад уроків для 10-го класу. Він запланував на понеділок шість уроків з таких предметів: геометрія, біологія, англійська мова, хімія, фізична культура, географія. Скільки всього існує різних варіантів розкладу уроків на ц...

Тригонометричні вирази

Функція 0 o 30 o 45 o 60 o 90 o 180 o 270 o sin 0 1 0 -1 cos 1 0 -1 0 tg 0 1 не існує 0 не існує сtg не існує 1 0 не існує 0 Знаходження значень невідомих тригонометричних функцій за відомими: sin 2 α+cos 2 α = 1 tgαctgα = 1 1+tg 2 α = 1+ctg 2 α = tgα = ctgα = Тригонометричні функції суми кутів: sin(α+β) = sinα⋅cosβ+cosα⋅sinβ sin(α-β) = sinα⋅cosβ-cosα⋅sinβ cos(α+β) = cosα⋅cosβ-sinα⋅sinβ cos(α-β) = cosα⋅cosβ+sinα⋅sinβ tg(α+β) = tg(α-β) = Формули зведення: 1. Визначити знак функції для даного кута. Функція (0,90 o ) (90 o ,180 o ) (180 o ,270 o ) (270 o ,360 o ) sin + + - - cos + - - + tg,ctg + - + - 2. Якщо перехід здійснено через π, 2π функцію ...