Перейти до основного вмісту

Вектори на площині

    Дії над векторами на площині:
    • Координати вектора знаходяться за формулою:
      =(xB-xA;yB-yA)
    • Довжина вектора знаходиться за формулою:
    • Додавання (віднімання) векторів:
      =(x±x;y±y)
    • Множення вектора на скаляр (число):
      k⋅=(kx;ky)
    • Скалярний добуток векторів:
      =cosα, де α - кут між векторами
    • Скалярний добуток векторів:
      =x⋅x+y⋅y
    • Косинус кута між векторами:cosα=
    Умова перпендикулярності векторів: два вектори перпендикулярні, якщо їх скалярний добуток дорівнює 0
    Умова колінеарності векторів: два вектори колінеарні, коли відношення відповідних координат цих векторів рівні
  1. Знайдіть координати вектора , якщо А (-2;3), В (-8;-5).
    АБВГД
    (6;8) (-10;-8) (-10;-2) (-6;-2) (-6;-8)
    Показати відповідь
    Д.
  2. При якому значенні х вектори (2;х) і (-4;10) перпендикулярні?
    АБВГД
    -5 -0,8 0,8 5 20
    Показати відповідь
    В.
    Використати умову перпендикулярності векторів.
  3. На рисунку зображено квадрат ABCD. Укажіть правильну векторну рівність.

    АБВГД
    =- =- =+ = -- =
    Показати відповідь
    В.
  4. Довжини перпендикулярних векторів і (див. рисунок) дорівнюють 6 і 8 відповідно. Знайдіть довжину вектора

    АБВГД
    2 6 8 10 14
    Показати відповідь
    Г.
  5. У прямокутній системі координат на площині дано вектори (3;4) і (-2;2). До кожного початку речення (1-4) доберіть його закінчення (А-Д) так, щоб утворилося правильне твердження.
    Початок реченняЗакінчення речення
    1 Довжина вектора
    2 Сумою векторів і (-3;k) є нульовий вектор, якщо k
    3 Вектори і (-4;m) колінеарні, якщо m
    4 Скалярний добуток векторів і
    А дорівнює 7.
    Б дорівнює 2.
    В дорівнює -4.
    Г дорівнює 5.
    Д дорівнює 4.
    Показати відповідь
    1-Г, 2-В, 3-Д, 4-Б.
  6. На рисунку зображено вектори у прямокутній системі координат. Установіть відповідність між парою векторів (1-4) і твердженням (А-Д), що є правильним для цієї пари.

    ВекториТвердження
    1 і
    2 і
    3 і
    4 і
    А вектори перпендикулярні
    Б вектори колінеарні, але не рівні
    В скалярний добуток векторів більший за 0
    Г вектори рівні
    Д кут між векторами тупий
    Показати відповідь
    1-В, 2-Д, 3-А, 4-Б.
  7. У прямокутній системі координат на площині задано паралелограм ABCD, cosA=0,44. Визначте довжину діагоналі ВD, якщо скалярний добуток векторів (6; -8) і дорівнює 88.
    Показати відповідь
    18.
    Знайти довжини векторів і застосувати теорему косинусів.
  8. У прямокутній системі координат ху на площині коло задано рівнянням х2-4х+у2+12у=9. Центр О цього кола збігається з точкою перетину діагоналей паралелограма АВСD. Визначте координати вершини С(хCC), якщо вектор (-1;2). У відповідь запишіть добуток хC·уC.
    Показати відповідь
    -24.
    Знайти спочатку координати центра кола і точки А. Потім скористатись формулами координат середини відрізка.
  9. На колі із центром О, яке задано рівнянням х22=80, вибрано точку М(х00) так, що вектор перпендикулярний до вектора (-2;1). Визначте абсцису х0 точки М, якщо х0<0.
    Показати відповідь
    -4.
    Якщо точка належить лінії, то її координати повинні задовільняти рівнянню цієї лінії.
  10. У прямокутній системі координат на площині задано вектори (-1;1) та (-1;2). Визначте значення m, за якого вектори та перпендикулярні.
    Показати відповідь
    -0,6.
    Скористатись умовою перпендикулярності векторів.
  11. У прямокутній системі координат на площині задано взаємно перпендикулярні вектори та (4; 3). Визначте абсцису точки В, якщо А(-2;0), а точка В лежить на прямій у=2х.
    Показати відповідь
    -0,8.
    Скористатись умовою перпендикулярності векторів.
  12. У прямокутній системі координат на площині задано колінеарні вектори вектори та (3; -5). Визначте абсцису точки В, якщо А(-4;1), а точка В лежить на прямій у=3.
    Показати відповідь
    -5,2.
    Скористатись умовою колінеарності векторів.
  13. При якому значенні у вектори (-3; 5) і (6; у) колінеарні?
    Показати відповідь
    -10.
    Скористатись умовою колінеарності векторів.
  14. Визначте кут між векторами і у градусах, якщо відомо, що (2; 2), (2; 4) і (-2;-6).
    Показати відповідь
    135.
    Знайти за формулою спочатку косинус кута між векторами.
  15. Обчисліть скалярний добуток векторів, зображених на рисунку.

    Показати відповідь
    18.
    Спочатку знайти координати векторів.

Коментарі

Популярні публікації

Первісна функції

Правила інтегрування C⋅f(x)dx=C⋅ f(x)dx (f(x)&pm;g(x))dx= f(x)dx&pm; g(x)dx Таблиця первісних x n dx= +C dx=ln|x|+C sinxdx=-cosx+C cosxdx=sinx+C dx=tgx+C dx= -ctgx+C a x dx= +C e x dx=e x +C НМТ 2024. На рисунку зображено графік функції Обчисліть значення виразу . Відповідь 31 . Скористатись геометричним змістом визначеного інтеграла. НМТ 2024. Обчисліть інтеграл . Відповідь 10 . Скористатись формулою скороченого множення. НМТ 2023. Якщо функція F(x)=x 3 +4 є однією з первісних функції f(x), то f(x)= А Б В Г Д 3x 2 +4 3x 2 3x 2x 2 Відповідь Б . Яка з наведених функцій є первісною для функції f(x)=х -4 ? А Б В Г Д F(x)= F(x)= F(x)= F(x)= F(x)= Відповідь Д . Функція F(x)=10x 5 -4 є первісною функції f(x). Укажіть функцію G(x), яка також є первісною функції f(x). А Б В Г Д G(x)= 10x 5 +7 G(x)= 2x 6 -4x G(x)=50x 6 G(x)=50x 4 G(x)= x 5 -4 Відповідь А . Якщо ...

Функції за графіками

НМТ 2024. Графік однієї з наведених функцій проходить через точку, зображену на рисунку. Укажіть цю функцію. А Б В Г Д y = log 4 x y = x + 2 y = −x 2 Показати відповідь В . НМТ 2024. На рисунку зображено графік функції y = f(x), визначеної на проміжку [–3; 3]. У яких координатних чвертях розташований графік функції y = f(x – 4)? А Б В Г Д лише в І та ІІ лише в ІІ та ІІІ лише в ІІІ та ІV лише в І та ІV у всіх чвертях Показати відповідь Г . НМТ 2024. На рисунку зображено графік функції y = f(x), визначеної на відрізку [1; 9]. Доберіть до початку речення (1–3) його закінчення (А − Д) так, щоб утворилося правильне твердження. Початок речення Закінчення речення 1 Найбільше значення функції y = f(x) на відрізку [1; 9] дорівнює 2 Найменше значення функції y = f(x) на відрізку [1; 3] дорівнює 3 Найбільше ціле значення x, за якого справджується нерівність f(x)<0, дорівнює А −1. Б 9. В 6. Г 7. Д 5. Показати відпові...

Дійсні числа

Завдання 1. НМТ. Маса протона наближено дорівнює 1,67 ∙ 10 −27 кг. Визначте наближену масу (кг) 100 протонів. 167 ∙ 10 −25 1,67 ∙ 10 −25 1,67 ∙ 10 −29 1,67 ∙ 10 −2700 1,67 ∙ 10 25 Показати відповідь Б . 100 ∙ 1,67 ∙ 10 −27 = 1,67 ∙ 100 ∙ 10 −27 = 1,67 ∙ 10 2 ∙ 10 −27 = 1,67 ∙ 10 2 + (-27) = 1,67 ∙ 10 −25 (використали властивість множення степенів з однаковими основами). Завдання 2. НМТ. Узгодьте вираз (1–3) із твердженням (А − Д) щодо значення цього виразу. 1 \frac{\pi}{3} 2 sin(\frac{7\pi}{2}) 3 π cos 90° А є ірраціональним числом Б є натуральним числом В є цілим від’ємним числом Г є раціональним числом, що не є цілим Д дорівнює 0 Показати відповідь 1-А, 2-В, 3-Б . 1. Є ірраціональним числом. 2. sin(\frac{7\pi}{2}) = sin(\frac{7\pi}{2} - 2\pi) = sin(\frac{7\pi}{2} - \frac{4\pi}{2}) = sin(\frac{3\pi}{2}) = - 1 (використали властивість періодичності функції sinx). -1 є цілим від’ємним числом. 3. π cos 90° = π 0 = 1. 1 є натуральни...

Комбінаторика

1. Правило додавання . Якщо І об'єкт можна обрати а способами, а ІІ - b способами, то обрати або І об'єкт або ІІ об'єкт можна a+b способами. 2. Правило множення . Якщо І об'єкт можна обрати а способами, а ІІ - b способами, то обрати і І об'єкт і ІІ об'єкт можна a⋅b способами. 3. Перестановки . Якщо з n об'єктів потрібно обрати всі n, то це можна зробити P n =n!=1⋅2⋅3⋅...⋅(n-1)⋅n способами. 4. Розміщення . Якщо з n об'єктів потрібно обрати m, причому порядок обрання важливий, то це можна зробити = способами. 5. Комбінації . Якщо з n об'єктів потрібно обрати m, причому порядок обрання не важливий, то це можна зробити = способами. Примітка . Скорочення факторіалів = =5⋅6⋅7=210 НМТ 2024. Заступник директора школи складає розклад уроків для 10-го класу. Він запланував на понеділок шість уроків з таких предметів: геометрія, біологія, англійська мова, хімія, фізична культура, географія. Скільки всього існує різних варіантів розкладу уроків на ц...

Тригонометричні вирази

Функція 0 o 30 o 45 o 60 o 90 o 180 o 270 o sin 0 1 0 -1 cos 1 0 -1 0 tg 0 1 не існує 0 не існує сtg не існує 1 0 не існує 0 Знаходження значень невідомих тригонометричних функцій за відомими: sin 2 α+cos 2 α = 1 tgαctgα = 1 1+tg 2 α = 1+ctg 2 α = tgα = ctgα = Тригонометричні функції суми кутів: sin(α+β) = sinα⋅cosβ+cosα⋅sinβ sin(α-β) = sinα⋅cosβ-cosα⋅sinβ cos(α+β) = cosα⋅cosβ-sinα⋅sinβ cos(α-β) = cosα⋅cosβ+sinα⋅sinβ tg(α+β) = tg(α-β) = Формули зведення: 1. Визначити знак функції для даного кута. Функція (0,90 o ) (90 o ,180 o ) (180 o ,270 o ) (270 o ,360 o ) sin + + - - cos + - - + tg,ctg + - + - 2. Якщо перехід здійснено через π, 2π функцію ...