Перейти до основного вмісту

Координати у просторі

    Координати точки
    • Якщо точка належить осі ОХ, то вона має координати (х;0;0), якщо точка належить осі ОУ, то вона має координати (0;у;0), якщо точка належить осі ОZ, то вона має координати (0;0;z)
    • Якщо точка належить площині ОХУ, то вона має координати (х;у;0), якщо точка належить площині ОУZ, то вона має координати (0;у;z), якщо точка належить площині ОХZ, то вона має координати (х;0;z)
    • Відстань між точками А(хA;yA;zA) та B(хB;yB;zB) знаходять за формулою AB=
    • Координати точки О, яка є серединою відрізка АВ, знаходять за формулами: хO=, yO=, zO=
  1. НМТ 2024. У прямокутній системі координат у просторі задано правильну чотирикутну призму ABCDA1B1C1D1. Діагоналі основи ABCD перетинаються в точці M. Висота призми втричі більша за сторону AB. Обчисліть об’єм цієї призми, якщо A(4; √10; 3), M(–2; 0; 1).
    Відповідь
    3000.

  • Яка з наведених точок належить осі Оz прямокутної системи координат у просторі?
    АБВГД
    М(0;-3;0) N(3;0;-3) K(-3;0;0) L(-3;3;0) F(0;0;-3)
    Відповідь
    Д.
  • У прямокутній декартовій системі координат у просторі на осі z вибрано точку М (див. рисунок). Серед наведених варіантів укажіть можливі координати цієї точки.

    АБВГД
    (1;0;0) (1;1;0) (0;0;1) (0;0;-1) (0;1;0)
    Відповідь
    В
  • Знайдіть відстань від точки А (2;3;6) до осі Oz.
    АБВГД
    7 6 5 3
    Відповідь
    А. Побудувати малюнок, за ним визначити як шукати відстань, застосувати теорему Піфагора.
  • У прямокутній системі координат у просторі знайдіть відстань від точки М(0;8;6) до осі Oу.
    АБВГД
    6 7 8 10 14
    Відповідь
    А. За малюнком визначити відстань.
  • Ортогональною проекцією відрізка з кінцями у точках А(-1;0;5) і В(-1;0;8) на координатну площину ху є:
    АБВГД
    пряма промінь відрізок точка фігура, що відрізняється від перелічених
    Відповідь
    Г.
  • Рівняння сфери
  • У прямокутній системі координат у просторі задано сферу з центром у точці М. Відрізок АВ — діаметр цієї сфери. Визначте координати точки М, якщо А (2;-1;0), В (8;3;2).
    АБВГД
    (10;2;2) (6;4;2) (3;2;1) (5;1;2) (5;1;1)
    Відповідь
    Д.
    Скористатись формулами координат середини відрізка.
  • У прямокутній системі координат у просторі задано сферу із центром у початку координат, якій належить точка А (0;0;-5). Яка з наведених точок також належить цій сфері?
    АБВГД
    К(5;5;0) L(0;1;4) M(0;0;10) N(0;0;5) P(5;5;5)
    Відповідь
    Г.
    Знайти радіус і порівняти його з відстанями від запропонованих точок до центра сфери.
  • На рисунку зображено прямокутну систему координат у просторі, на осях якої позначено точки K, L, M, N. Установіть відповідність між точками K, L, M, N (1-4) та їхніми можливими координатами (А-Д).

    Точка Координати
    1 К
    2 L
    3 M
    4 N
    А (-3;0;0)
    Б (0;-3;0)
    В (0;0;-3)
    Г (0;0;3)
    Д (0;3;0)
    Відповідь
    1-Б, 2-Г, 3-А, 4-Д.
    Визначити характеристики координат в залежності від розміщення точки.
  • У прямокутній декартовій системі координат xyz у просторі задано точку М(1;-4;8). Установіть відповідність між початком речення (1-4) та його закінченням (А-Д) так, щоб утворилося правильне твердження.
    Початок речення Закінчення речення
    1 Відстань від точки М до площини ху дорівнює
    2 Відстань від точки М до початку координат дорівнює
    3 Відстань від точки М до осі z дорівнює
    4 Відстань від точки М до точки N(1;0;8) дорівнює
    А 1
    Б 4
    В
    Г 8
    Д 9
    Відповідь
    1-Г, 2-Д, 3-В, 4-Б.
    Скористатись формулою відстані між двома точками.
  • ⇐VІ.10.
    Комбінації тіл
    До змісту ⇒VІ.12.
    Вектори у просторі

    Коментарі

    Unknown каже…
    Найкращий сайт!!!
    Анонім каже…
    Топ сайт
    Анонім каже…
    Підтримую
    Анонім каже…
    Дуже гарний сайт, дякую дуже!

    Популярні публікації

    Дійсні числа

    Завдання 1. НМТ. Маса протона наближено дорівнює 1,67 ∙ 10 −27 кг. Визначте наближену масу (кг) 100 протонів. 167 ∙ 10 −25 1,67 ∙ 10 −25 1,67 ∙ 10 −29 1,67 ∙ 10 −2700 1,67 ∙ 10 25 Показати відповідь Б . 100 ∙ 1,67 ∙ 10 −27 = 1,67 ∙ 100 ∙ 10 −27 = 1,67 ∙ 10 2 ∙ 10 −27 = 1,67 ∙ 10 2 + (-27) = 1,67 ∙ 10 −25 (використали властивість множення степенів з однаковими основами). Завдання 2. НМТ. Узгодьте вираз (1–3) із твердженням (А − Д) щодо значення цього виразу. 1 \frac{\pi}{3} 2 sin(\frac{7\pi}{2}) 3 π cos 90° А є ірраціональним числом Б є натуральним числом В є цілим від’ємним числом Г є раціональним числом, що не є цілим Д дорівнює 0 Показати відповідь 1-А, 2-В, 3-Б . 1. Є ірраціональним числом. 2. sin(\frac{7\pi}{2}) = sin(\frac{7\pi}{2} - 2\pi) = sin(\frac{7\pi}{2} - \frac{4\pi}{2}) = sin(\frac{3\pi}{2}) = - 1 (використали властивість періодичності функції sinx). -1 є цілим від’ємним числом. 3. π cos 90° = π ...

    Піраміда та її елементи

    Піраміда: у n-кутної піраміди n+1 вершина, n+1 граней, 2n ребер бічні грані піраміди - трикутники, а правильної піраміди - рівнобедрені трикутники правильна піраміда - піраміда, в основі якої лежить правильний багатокутник, а основа висоти співпадає з центром цього багатокутника Завдання 1. Розгортку якого з наведених многогранників зображено на рисунку? розгортка піраміди, net of the pyramid Трикутна призма, Triangular prysm чотирикутна піраміда, Square pyramid трикутна піраміда, Triangular pyramid прямокутний паралелепіпед, Rectangular prism п'ятикутна призма, Pentagonal prism Показати відповідь Б . Маємо один чотирикутник - основу і 4 трикутника - бічні грані, тому наведено розгортку чотирикутної піраміди. Завдання 2. Визначте кількість граней восьмикутної піраміди. 7 8 9 16 17 Показати відповідь В . Маємо 8 бічних граней та 1 грань основи. Разом 9 граней. Завдання 3. Скільки всього граней у піраміди, яка ...

    Функції за графіками

    НМТ 2024. Графік однієї з наведених функцій проходить через точку, зображену на рисунку. Укажіть цю функцію. А Б В Г Д y = log 4 x y = x + 2 y = −x 2 Показати відповідь В . НМТ 2024. На рисунку зображено графік функції y = f(x), визначеної на проміжку [–3; 3]. У яких координатних чвертях розташований графік функції y = f(x – 4)? А Б В Г Д лише в І та ІІ лише в ІІ та ІІІ лише в ІІІ та ІV лише в І та ІV у всіх чвертях Показати відповідь Г . НМТ 2024. На рисунку зображено графік функції y = f(x), визначеної на відрізку [1; 9]. Доберіть до початку речення (1–3) його закінчення (А − Д) так, щоб утворилося правильне твердження. Початок речення Закінчення речення 1 Найбільше значення функції y = f(x) на відрізку [1; 9] дорівнює 2 Найменше значення функції y = f(x) на відрізку [1; 3] дорівнює 3 Найбільше ціле значення x, за якого справджується нерівність f(x)<0, дорівнює А −1. Б 9. В 6. Г 7. Д 5. Показати відпові...

    Первісна функції

    Правила інтегрування C⋅f(x)dx=C⋅ f(x)dx (f(x)&pm;g(x))dx= f(x)dx&pm; g(x)dx Таблиця первісних x n dx= +C dx=ln|x|+C sinxdx=-cosx+C cosxdx=sinx+C dx=tgx+C dx= -ctgx+C a x dx= +C e x dx=e x +C НМТ 2024. На рисунку зображено графік функції Обчисліть значення виразу . Відповідь 31 . Скористатись геометричним змістом визначеного інтеграла. НМТ 2024. Обчисліть інтеграл . Відповідь 10 . Скористатись формулою скороченого множення. НМТ 2023. Якщо функція F(x)=x 3 +4 є однією з первісних функції f(x), то f(x)= А Б В Г Д 3x 2 +4 3x 2 3x 2x 2 Відповідь Б . Яка з наведених функцій є первісною для функції f(x)=х -4 ? А Б В Г Д F(x)= F(x)= F(x)= F(x)= F(x)= Відповідь Д . Функція F(x)=10x 5 -4 є первісною функції f(x). Укажіть функцію G(x), яка також є первісною функції f(x). А Б В Г Д G(x)= 10x 5 +7 G(x)= 2x 6 -4x G(x)=50x 6 G(x)=50x 4 G(x)= x 5 -4 Відповідь А . Якщо ...

    Трикутники та їх властивості

    Види трикутників За кутами Гострокутний - всі кути гострі (якщо a, b, c - сторони трикутника, причому с - найбільша, то c 2 <a 2 +b 2 ). Прямокутний - один з кутів прямий (якщо a, b, c - сторони трикутника, причому с - найбільша, то c 2 =a 2 +b 2 ). Тупокутний - один з кутів тупий (якщо a, b, c - сторони трикутника, причому с - найбільша, то c 2 >a 2 +b 2 ). За сторонами Різносторонній - всі сторони різні. Рівнобічний - дві сторони рівні (називаються бічними, третя - основою). Рівносторонній (правильний) - всі сторони рівні. Основні елементи трикутників Медіана - відрізок, який сполучає вершину трикутника з серединою протилежної сторони (ділить сторону навпіл). Медіани трикутника перетинаються в одній точці і точкою перетину діляться у відношенні 2:1, починаючи від вершини. Висота - відрізок, який проведений з вершини трикутника перпендикулярно до протилежної сторони. Бісектриса - відрізок, який проведено з вершини до протилежної сторони і який ділить к...