Перейти до основного вмісту

Геометрична прогресія

    Геометрична прогресія
    1. Знаходження n-го члена геометричної прогресії: bn=b1⋅qn-1
    2. Знаходження суми перших n членів геометричної прогресії:
    3. Знаходження суми всіх членів спадної геометричної прогресії (|q|<1):
    4. Співвідношення між сусідніми членами прогресії: (bn)2=bn-1⋅bn+1
  1. НМТ 2024. Сума перших п’яти членів геометричної прогресії (bn) дорівнює 32, а сума перших чотирьох її членів дорівнює 20. Визначте b5.
    АБВГД
    1,6 52 11,4 –12 12
    Відповідь
    Д.

  2. У геометричній прогресії (bn) задано b3=0,2; b4=. Знайдіть знаменник цієї прогресії.
    АБВГД
    Відповідь
    А.
  3. У геометричній прогресії (bn): b1=, b2=. Визначте b4.
    АБВГД
    2 4
    Відповідь
    Г.
  4. Визначте знаменник геометричної прогресії (bn), якщо b9=24; b6=.
    АБВГД
    3 6 -6
    Відповідь
    Г.
  5. Задано геометричну прогресію (bn), для якої другий член b2=12 і знаменник q= -2. Знайдіть b1.
    АБВГД
    24 14 10 -6 -24
    Відповідь
    Г.
  6. Визначте знаменник геометричної прогресії (bn), якщо b9=24; .
    Відповідь
    -6.
  7. Обчисліть суму членів нескінченно спадної геометричної прогресії, у якої bn=5·3-n.
    Відповідь
    2,5.
  8. Знаменник геометричної прогресії дорівнює , а сума чотирьох перших її членів дорівнює 65. Знайдіть перший член цієї прогресії.
    Відповідь
    27.
  9. Добуток другого та четвертого членів геометричної прогресії дорівнює 36. Усі члени цієї прогресії є додатними.
    1. Визначте третій член цієї прогресії.
    2. Визначте перший член цієї прогресії, якщо він удвічі більший за другий її член.
    Відповідь
    6;24 .
  10. Четвертий член геометричної прогресії у 8 разів більше за перший член. Сума третього й четвертого членів цієї прогресії на 14 менша за їхній добуток. Визначте перший член прогресії, якщо всі її члени є додатними числами.
    Відповідь
    0,875.
  11. Сума другого та четвертого членів зростаючої геометричної прогресії дорівнює 45, а їхній добуток — 324. Визначте перший член цієї прогресії.
    Відповідь
    4,5.
  12. Укажіть ненульове значення х, за якого значення виразів x-8, 3x та 6х є послідовними членами геометричної прогресії?
    Показати відповідь
    -16. Шлях до розв'язання: Застосувати властивість геометричної прогресії: bn2 = bn-1⋅bn+1.

Коментарі

Анонім каже…
Дуже корисно. Дякую!
Анонім каже…
Дуже дякую

Популярні публікації

Первісна функції

Правила інтегрування C⋅f(x)dx=C⋅ f(x)dx (f(x)&pm;g(x))dx= f(x)dx&pm; g(x)dx Таблиця первісних x n dx= +C dx=ln|x|+C sinxdx=-cosx+C cosxdx=sinx+C dx=tgx+C dx= -ctgx+C a x dx= +C e x dx=e x +C НМТ 2024. На рисунку зображено графік функції Обчисліть значення виразу . Відповідь 31 . Скористатись геометричним змістом визначеного інтеграла. НМТ 2024. Обчисліть інтеграл . Відповідь 10 . Скористатись формулою скороченого множення. НМТ 2023. Якщо функція F(x)=x 3 +4 є однією з первісних функції f(x), то f(x)= А Б В Г Д 3x 2 +4 3x 2 3x 2x 2 Відповідь Б . Яка з наведених функцій є первісною для функції f(x)=х -4 ? А Б В Г Д F(x)= F(x)= F(x)= F(x)= F(x)= Відповідь Д . Функція F(x)=10x 5 -4 є первісною функції f(x). Укажіть функцію G(x), яка також є первісною функції f(x). А Б В Г Д G(x)= 10x 5 +7 G(x)= 2x 6 -4x G(x)=50x 6 G(x)=50x 4 G(x)= x 5 -4 Відповідь А . Якщо ...

Дійсні числа

Завдання 1. НМТ. Маса протона наближено дорівнює 1,67 ∙ 10 −27 кг. Визначте наближену масу (кг) 100 протонів. 167 ∙ 10 −25 1,67 ∙ 10 −25 1,67 ∙ 10 −29 1,67 ∙ 10 −2700 1,67 ∙ 10 25 Показати відповідь Б . 100 ∙ 1,67 ∙ 10 −27 = 1,67 ∙ 100 ∙ 10 −27 = 1,67 ∙ 10 2 ∙ 10 −27 = 1,67 ∙ 10 2 + (-27) = 1,67 ∙ 10 −25 (використали властивість множення степенів з однаковими основами). Завдання 2. НМТ. Узгодьте вираз (1–3) із твердженням (А − Д) щодо значення цього виразу. 1 \frac{\pi}{3} 2 sin(\frac{7\pi}{2}) 3 π cos 90° А є ірраціональним числом Б є натуральним числом В є цілим від’ємним числом Г є раціональним числом, що не є цілим Д дорівнює 0 Показати відповідь 1-А, 2-В, 3-Б . 1. Є ірраціональним числом. 2. sin(\frac{7\pi}{2}) = sin(\frac{7\pi}{2} - 2\pi) = sin(\frac{7\pi}{2} - \frac{4\pi}{2}) = sin(\frac{3\pi}{2}) = - 1 (використали властивість періодичності функції sinx). -1 є цілим від’ємним числом. 3. π cos 90° = π 0 = 1. 1 є натуральни...

Функції за графіками

НМТ 2024. Графік однієї з наведених функцій проходить через точку, зображену на рисунку. Укажіть цю функцію. А Б В Г Д y = log 4 x y = x + 2 y = −x 2 Показати відповідь В . НМТ 2024. На рисунку зображено графік функції y = f(x), визначеної на проміжку [–3; 3]. У яких координатних чвертях розташований графік функції y = f(x – 4)? А Б В Г Д лише в І та ІІ лише в ІІ та ІІІ лише в ІІІ та ІV лише в І та ІV у всіх чвертях Показати відповідь Г . НМТ 2024. На рисунку зображено графік функції y = f(x), визначеної на відрізку [1; 9]. Доберіть до початку речення (1–3) його закінчення (А − Д) так, щоб утворилося правильне твердження. Початок речення Закінчення речення 1 Найбільше значення функції y = f(x) на відрізку [1; 9] дорівнює 2 Найменше значення функції y = f(x) на відрізку [1; 3] дорівнює 3 Найбільше ціле значення x, за якого справджується нерівність f(x)<0, дорівнює А −1. Б 9. В 6. Г 7. Д 5. Показати відпові...

Комбінаторика

1. Правило додавання . Якщо І об'єкт можна обрати а способами, а ІІ - b способами, то обрати або І об'єкт або ІІ об'єкт можна a+b способами. 2. Правило множення . Якщо І об'єкт можна обрати а способами, а ІІ - b способами, то обрати і І об'єкт і ІІ об'єкт можна a⋅b способами. 3. Перестановки . Якщо з n об'єктів потрібно обрати всі n, то це можна зробити P n =n!=1⋅2⋅3⋅...⋅(n-1)⋅n способами. 4. Розміщення . Якщо з n об'єктів потрібно обрати m, причому порядок обрання важливий, то це можна зробити = способами. 5. Комбінації . Якщо з n об'єктів потрібно обрати m, причому порядок обрання не важливий, то це можна зробити = способами. Примітка . Скорочення факторіалів = =5⋅6⋅7=210 НМТ 2024. Заступник директора школи складає розклад уроків для 10-го класу. Він запланував на понеділок шість уроків з таких предметів: геометрія, біологія, англійська мова, хімія, фізична культура, географія. Скільки всього існує різних варіантів розкладу уроків на ц...

Тригонометричні вирази

Функція 0 o 30 o 45 o 60 o 90 o 180 o 270 o sin 0 1 0 -1 cos 1 0 -1 0 tg 0 1 не існує 0 не існує сtg не існує 1 0 не існує 0 Знаходження значень невідомих тригонометричних функцій за відомими: sin 2 α+cos 2 α = 1 tgαctgα = 1 1+tg 2 α = 1+ctg 2 α = tgα = ctgα = Тригонометричні функції суми кутів: sin(α+β) = sinα⋅cosβ+cosα⋅sinβ sin(α-β) = sinα⋅cosβ-cosα⋅sinβ cos(α+β) = cosα⋅cosβ-sinα⋅sinβ cos(α-β) = cosα⋅cosβ+sinα⋅sinβ tg(α+β) = tg(α-β) = Формули зведення: 1. Визначити знак функції для даного кута. Функція (0,90 o ) (90 o ,180 o ) (180 o ,270 o ) (270 o ,360 o ) sin + + - - cos + - - + tg,ctg + - + - 2. Якщо перехід здійснено через π, 2π функцію ...